What is it?

- Open source, Python-based energy storage analysis software application suite
- Developed as a graphical user interface for the optimization modeling capabilities of SNL’s energy storage analytics group
 - Early prototype was presented by David Copp at last year’s peer review (2017)
- Initial development driven by Pyomo models for energy storage valuation
- Now publicly available on GitHub
 - github.com/rconcep/snl-quest
Energy storage valuation

Given an energy storage device, an electricity market with a certain payment structure, and market data, how would the device maximize the revenue generated and provide value?

How much revenue could a flywheel plant located at the Houston pricing node in the ERCOT market have generated in the month of July 2016 by participating in energy arbitrage? What if it also provided frequency regulation services?

\[
\begin{align*}
\text{max} \sum_i & \left(\lambda_i (q^d_i - \eta_c q^r_i) + q^{ru}_i (\lambda^{ru}_i + \delta^{ru}_i \lambda_i) + q^{rd}_i (\lambda^{rd}_i - \delta^{rd}_i \lambda_i) \right) e^{-R_i} \\
\text{subject to:} & \\
& s_{i+1} = \eta_s s_i + \eta_c q^r_i - q^d_i + \eta_c \delta^{rd}_i q^{rd}_i - \delta^{ru}_i q^{ru}_i \\
& 0 \leq s_i \leq \bar{S} \\
& q^d_i + q^r_i + q^{ru}_i + q^{rd}_i \leq \bar{Q}
\end{align*}
\]

state of charge definition
state of charge limits
power/energy charged limits

Other constraints, such as requiring the final SoC to equal the initial SoC or reserving energy capacity for resiliency applications can be set.

The solution of the mathematical program is the optimal policy of managing state of charge based assuming perfect foresight of market conditions. The corresponding objective value is an upper bound.
The ValuationOptimizer class for wrapping Pyomo models

Idea: Create a Python class that abstracts away the details of Pyomo models (encapsulation) while also supporting an entire family of optimization models, e.g., energy storage valuation for every market area in the US.

ValuationOptimizer
- `market_type`
- `solver`
- `price_electricity`
 ...
- `set_model_parameters()`
- `run()`
- `get_results()`

Builds a Pyomo model that you can solve and obtain the results from.

ExpressionsBlock
- `market_type`
- `set_expressions()`
 - `objective_arb()`
 - `constraints_arb()`
 ...

Defines the objective function and constraints that describe the problem.

All a user needs to know is how to interact with ValuationOptimizer object; they do not need to know anything about Pyomo.
Valuation GUI
User specifies a set of mathematical programs to solve.
- Market model
- ESS characteristics
- Historical data

Val. Op. Handler
Interprets what models to build, solves them, and saves the object states.

Val. DMS
Manages historical data in memory; returns requested data, reading from XLS/CSV files as necessary.

Widgets
Scores of “widgets” are defined and arranged into object trees to describe the UI.

Results Viewer
Plots optimization results or exports the results as DataFrames in CSV format.

Wizard Reporting
Creates fancy visualizations using wizard output and generates printout reports.

Pass set of instructions

Return solved instance

Extract results from solved instance

Create a new Val. Op. instance, populate, and solve
Building and solving models...

This may take a while. Please wait patiently!

Success!

All calculations finished. Let's check out the results!

OK
Run multiple valuations with one click.

Select market area

- ERCOT
- MISO
QuESt Data Manager

- Uses “web crawling” to search ISO/RTO website for download links
- Uses API provided by ISO/RTO to make queries
- Prepares a data bank for use in other applications, e.g., QuESt Valuation
 - Downloads and extracts compressed archives
 - Formats API query results
 - Names files and creates directory structure to keep track of what’s been downloaded

We do not own the historical data that we use, so we cannot distribute any.
The Future

Mission: Continue adding applications and new capabilities to the suite, building upon the software architecture and GUI foundation that we have established.

- Add support in QuESt Valuation/Data Manager for the remaining US markets
- Consider more complex valuation models, such as modeling degradation
- New applications
 - Behind-the-meter ES valuation
 - Technology selection assistant
 - Data explorer for ES finance information
 - ?
Acknowledgements

The authors would like to acknowledge the support and guidance from Dr. Imre Gyuk, the program manager for the U.S. Department of Energy Office of Electricity Energy Storage program.

Authors

Ricky Concepcion
David Copp
Tu Nguyen
Felipe Wilches-Bernal

Inquiries to:
Ricky Concepcion
rconcep@sandia.gov

Follow us on GitHub:
github.com/rconcep/snl-quest