Screening of Alkaline Battery Separators Using Anodic Stripping Voltammetry

October 11, 2017

Jonathon Duay, Timothy N. Lambert, and Ruby Aidun

Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525
Rechargeable Alkaline Zn-MnO$_2$ Batteries

- MnO$_2$ • ~ $1-2$ per lb • Mn, 12th most abundant • 16,000,000 tons (2012) • Safe

- KOH • Potash ~ 260 per ton • Abundant • Aqueous • > Safety than Li-org

- Zn • ~ 1 per lb • 25th most abundant • 13,000,000 tons (2012) • Safe

<table>
<thead>
<tr>
<th>Element</th>
<th>Cost per lb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Co</td>
<td>$13-15/lb</td>
</tr>
<tr>
<td>Li</td>
<td>$2.5/lb</td>
</tr>
<tr>
<td>V</td>
<td>$11-12/lb</td>
</tr>
<tr>
<td>Al</td>
<td>$0.8-0.9/lb</td>
</tr>
<tr>
<td>Ni</td>
<td>$6-9/lb</td>
</tr>
<tr>
<td>Cu</td>
<td>$2.5-3.5/lb</td>
</tr>
</tbody>
</table>

The ultimate challenge in Zn/MnO$_2$ batteries is reversibility to increase cell lifetime.
Rechargeable Alkaline Zn-MnO$_2$ Batteries

\[
\begin{align*}
\text{Mn}^{IV}O_2 + H_2O + e^- & \rightleftharpoons \text{Mn}^{III}OOH + OH^- & E^0 = 0.26 \text{ V (Hg/HgO)} \\
\text{Mn}^{III}OOH + H_2O + 3OH^- & \rightleftharpoons \text{Mn}^{III}(OH)_6^{3-} & E^0 = -0.38 \text{ V (Hg/HgO)} \\
\text{Mn}^{III}(OH)_6^{3-} + e^- & \rightleftharpoons \text{Mn}^{II}(OH)_2 + 4OH^- &
\end{align*}
\]
Failure Mechanisms of MnO$_2$ Cathode

1. Instability of Mn(III) resulting in formation of irreversible Mn$_3$O$_4$
2. Zn poisoning forming irreversible ZnMn$_2$O$_4$
Research by Ford in the 1980s showed that the MnO$_2$ cathode could be stabilized at low loadings in the absence of Zinc.

Full 2e$^-$ MnO$_2$ cathodes have been shown to be 100% reversible but only in the absence of Zinc thus there is an imperative need for Zinc/Zincate blocking separators.

Features of a Good Zn Battery Separator

Cathode

High Ionic Conductivity
Metric: Electrochemical Impedance

Low Zincate Permeability
Metric: Zinc Diffusion Coefficient

Separator

OH⁻, K⁺, or Na⁺

Zn(OH)₄²⁻

Zinc Electrode
Features of a Good Zn Battery Separator

High Ionic Conductivity
Metric: Electrochemical Impedance

Low Zincate Permeability
Metric: Zinc Diffusion Coefficient

A rapid screening method for the determination of Zn (zincate) membrane/separater permeability is needed
Sampling, Dilutions, and Calibration Solutions

- time intensive
- lots of glassware
- requires acidic solutions (2% HNO₃)
- requires total dissolved solids <0.2%
- huge dilution >300X
- expensive bulky equipment

Instrumentation

Perkin-Elmer
Inductively Coupled Plasma – Mass Spectrometer
Analysis Techniques – Complexometric Titration

Colorimetric Titration w/EDTA

- Difficult Endpoint Determination
- Requires pH ≤ 11
- Use of ammonium buffer
- Dilution >20X
- ppm limits of detection

Instrumentation

- Or
 - UV/Vis Spectrometer
 - Perkin-Elmer
Anodic Stripping Voltammetry (ASV)
-historically done on Hg drop electrodes
-done in buffered solutions

Sensitive
-limits of detection (LOD): ppb levels
Selective
-different metals are resolved by their stripping/oxidation potential

Analyst, 2012, 137, pp. 614-617
ASV with *in situ* Plated Bi Films

-Bi film electrodes increasingly replacing Hg

Bi film electrodes

- less toxic than Hg
- low sensitivity to dissolved oxygen
- better reproducibility
- no need for electrode conditioning

in situ Plated Bi Films

-Bi is plated onto an passive electrode with the element of interest
- During stripping, the element of interest is stripped from the Bi film

Typically done in buffered pH ~4 solutions due to insoluble metal oxides at higher pH levels
Alkaline Aqueous Chemistry (pH>14)

Insoluble metal oxides become soluble by hydroxide complexation

\[
\begin{align*}
\text{ZnO(s)} & + \text{H}_2\text{O} + 2\text{OH}^- & \rightarrow & \text{Zn(OH)}_4^{2-} \\
\text{PbO(s)} & + \text{H}_2\text{O} + \text{OH}^- & \rightarrow & \text{Pb(OH)}_3^- \\
\text{CdO(s)} & + \text{H}_2\text{O} + \text{OH}^- & \rightarrow & \text{Cd(OH)}_3^- \\
\text{Bi}_2\text{O}_3(s) & + 3\text{H}_2\text{O} + 2\text{OH}^- & \rightarrow & 2\text{Bi(OH)}_4^-
\end{align*}
\]

This allows for the opportunity to use ASV to measure Zn ion species in highly alkaline environments for the first time

http://www.porexfiltration.com/learning-center/technology/precipitation-microfiltration/
Zinc ASV Curves for Various Films

Duay et al., Electroanalysis (2017) DOI:10.1002/elan.201700337
Zinc ASV Curves for Various Films

Duay et al., *Electroanalysis* (2017) DOI:10.1002/elan.201700337
Zinc ASV Curves for Various Films

Duay et al., *Electroanalysis* (2017) DOI: 10.1002/elan.201700337
Zinc ASV Curves for Various Films

Zinc stripping peak is only well-defined and Gaussian in the presence of Bi, Cd, and Pb….why?

Duay et al., Electroanalysis (2017) DOI:10.1002/elan.201700337
Zinc ASV Curves for Various Films

Zinc stripping peak is only well-defined and Gaussian in the presence of Bi, Cd, and Pb….why?

Duay et al., Electroanalysis (2017) DOI:10.1002/elan.201700337
Need for all three Cd, Pb, and Bi?

All three have been used as additives in battery grade Zn where ‘plating’ and ‘stripping’ of Zn is necessary

Cadmium (Cd)
-increases hydrogen overpotential
-known to alloy with Zn

Lead (Pb)
-increases hydrogen overpotential
-known as alternative ASV film to Bi

Bismuth (Bi)
-increases hydrogen overpotential
Calibration Curves in KOH and NaOH

Linear Behavior of Zn Stripping Peak Area vs. Zn Concentration
Calibration Curves in KOH and NaOH

<table>
<thead>
<tr>
<th>Figures of Merit</th>
<th>30% NaOH</th>
<th>35% KOH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zn LOD (ppm)</td>
<td>2.9 ± 0.4</td>
<td>1.6 ± 0.6</td>
</tr>
<tr>
<td>Sensitivity (µC/ppm)</td>
<td>13.3 ± 1.8</td>
<td>31.8 ± 9.1</td>
</tr>
<tr>
<td>Solution Molarity (M)</td>
<td>10.2</td>
<td>7.07</td>
</tr>
<tr>
<td>Solution Conductivity (mS/cm)</td>
<td>~190</td>
<td>~620</td>
</tr>
</tbody>
</table>

Linear Behavior of Zn Stripping Peak Area vs. Zn Concentration

Duay et al., Electroanalysis (2017) DOI:10.1002/elan.201700337
Zincate Membrane Diffusion Rates

Measurements performed with 3-D printed polypropylene H-Cell
Special thanks to Eric Allcorn for help in designing and printing
Zincate Membrane Diffusion Rates

Testing of commercial-off-the-shelf membranes:
- Celgard 3501
- Cellophane 350P00

\[
D = \frac{V_b L}{A t} \ln \left(\frac{C_A}{C_A - C_B} \right)
\]

- **D**: diffusion coefficient of zinc
- **V_b**: volume of the draw solution
- **L**: thickness of the membrane
- **A**: exposed area of the membrane
- **t**: time elapsed
- **C_A**: concentration of zinc in the feed solution
- **C_B**: concentration of zincate in the draw solution.

Duay et al., Electroanalysis (2017) DOI:10.1002/elan.201700337
Zincate Membrane Diffusion Rates

Testing of commercial-off-the-shelf membranes:
- Celgard 3501
- Cellophane 350P00

\[D = \frac{V_b}{bL} A t \ln \left(\frac{C_A}{C_B} \right) \]

Note: ICP/MS results are in the absence of Bi, Pb, and Cd in Solution.

Duay et al., *Electroanalysis* (2017) DOI:10.1002/elan.201700337
Zincate Membrane Diffusion Rates

Zincate Diffusion Coefficient results compare well to ICP-MS

\[
D = \frac{V_b \cdot L}{A \cdot t \cdot \ln \left(\frac{C_A}{C_B} \right)}
\]

With Bi, Pb, and Cd in Solution

Duay et al., Electroanalysis (2017) DOI: 10.1002/elan.201700337
Comparison of ASV with Other Methods

<table>
<thead>
<tr>
<th>Method</th>
<th>Dilution Factor</th>
<th>Method LOD (Method LOD x Dilution Factor)</th>
<th>Timeframe of Experiment</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ASV (this work)</td>
<td>0</td>
<td>1.6 ± 0.6 ppm</td>
<td>Hours</td>
<td>No Dilution or Buffered pH Needed</td>
</tr>
<tr>
<td>ICP-MS</td>
<td>> 300x</td>
<td>25 ± 8 ppb*</td>
<td>Days</td>
<td>Need Acidified Solution with Total Dissolve Solids below 0.2%</td>
</tr>
<tr>
<td>Complexometric Titration</td>
<td>> 20x</td>
<td>4.8 ± 1.2 ppm*</td>
<td>Weeks</td>
<td>Need Buffered pH Solution for Unambiguous Color Change</td>
</tr>
</tbody>
</table>

*Values obtained in our lab.

ASV has no need for dilution

ASV Experimental LOD is lower compared to other methods

Timeframe of ASV Experiments is Shorter

ASV data is collected in real time with the lowest experimental limit of detection (LOD) for Zn
Conclusions

- Anodic Stripping Voltammetry is used for the first time in high pH Conditions where Zn stripping peak is linear with Zn concentration were found
- Application towards Zn alkaline battery membranes was identified
- This method is used in situ which allows real time Zn sensing
- Zn diffusion coefficient results compare well to traditional ICP-MS methods

This method will be invaluable in the development and screening of new separators for advanced alkaline zinc batteries
Acknowledgements

Office of Electricity Delivery and Energy Reliability
Energy Storage Program Manager – Dr. Imre Gyuk

Dr. Timothy Lambert
Ruby Aidun
Joed Ortiz
Eric Allcorn
Maria Kelly
Julian Vigil
Questions?