Bounds of Supercapacitor Open-Circuit Voltage Change after Constant Power Experiments

Hengzhao Yang

California State University, Long Beach October 11, 2017

Outline

- Introduction
- Supercapacitor Charge Redistribution
- A Simplified Supercapacitor Model
- Bounds of Supercapacitor Voltage Change
- Experiments and Results
- Conclusion

Introduction

Supercapacitor as an energy storage technology

– Pros

- High power density
- Long cycle life
- Cons
 - Low energy density
 - High self-discharge rate
- Applications of supercapacitor-based systems
 - Smart grid, electric and hybrid vehicles
 - Embedded systems (wireless sensor nodes, biomedical devices, etc.)
 - Cyber-physical systems (autonomous robots, etc.)

Supercapacitor Charge Redistribution

- Two experiments
 - Sample: 10 F, 2.7 V
 - Power: 0.4 W
 - Redistribution: 600 s
- "Ch": voltage drop
 - Total: 0.1294 V
 - ESR: 0.0237 V
 - Redistribution: 0.1057 V
- "Dis": voltage recovery
 - Total: 0.0944 V
 - ESR: 0.0241 V
 - Redistribution: 0.0703 V

Supercapacitor Models

- Variable leakage resistance (VLR) model [1]
 - Immediate branch: R_1 and C_1
 - Delayed branch: R_2 and C_2
 - VLR: R₃
- Simplified model
 - R₃ is removed: self-discharge is long-term effect
 - $-C_1$ is constant
 - $-C_2 = \alpha C_1 (0.11 \delta \alpha \delta 0.25) [2]$
 - R₁ takes ESR value

Bounds of Voltage Change

- Supercapacitor terminal voltage at t=0- $V_T(0-) = V_1(0-) + I_1(0-)R_1$ (1)
- Constant power

$$P = V_T(0-)I \tag{2}$$

• Rewrite (1) with $I_1(0)=I$ and $R_1=R$ (ESR value) $V_T(0-) = V_1(0-) + IR$ (3)

Bounds of Voltage Change (Continued)

Supercapacitor terminal voltage at t=□

$$V_1(0-)C_1 + V_2(0-)C_2 = V_T(\infty)(C_1 + C_2)$$
(4)

$$V_T(\infty) = \frac{V_1(0-) + \alpha V_2(0-)}{1+\alpha}$$
(5)

• Voltage change

$$\Delta V_T = V_T(\infty) - V_T(0-) = \frac{\alpha (V_2(0-) - V_1(0-))}{1+\alpha} - IR$$
 (6)

Bounds of Voltage Change (Continued)

• Relate $V_1(0-)$ to $V_T(0-)$ (denoted as V_M)

$$V_1(0-) = V_M - IR \tag{7}$$

Range of V₂(0-) (V_R: rated voltage)

$$0 \le V_2(0-) \le V_R \tag{8}$$

Bounds of voltage change

$$\frac{-\alpha V_M - PR/V_M}{1+\alpha} \le \Delta V_T \le \frac{\alpha (V_R - V_M) - PR/V_M}{1+\alpha}$$
(9)

- Information needed to estimate bounds
 - V_R and R: supercapacitor datasheet
 - V_M and P: terminal voltage and constant power at t=0-
 - Parameter α : C₂= α C₁ (0.11 δ $\alpha\delta$ 0.25)

Constant Power Experiments

• Supercapacitor samples [3]

Sample	1	2	3	4
Manufacturer	Cooper Bussmann	Maxwell	Maxwell	Maxwell
Model	PB-5R0V104-R	BCAP0001	BCAP0010	BCAP0100
Capacitance (F)	0.1	1	10	100
Voltage (V)	5	2.7	2.7	2.7

- Charge experiments (10 F sample)
 - Termination voltage: Ch_1 - Ch_4 (2.7, 2.2, 1.7, and 1.2 V)
 - Power: Ch_1 and Ch_5
 - Ch₁: 0.4 W
 - Ch₅: 0.08 W

Constant Power Experiments (Continued)

- Discharge experiments (10 F sample)
 - Beginning voltage: Dis_1 - Dis_3 (2.7, 2.2, and 1.7 V)
 - Power: Dis_1 and Dis_4 (0.4 and 0.08 W)
 - Time: Dis_1 , Dis_5 , and Dis_6 (15, 5, and 25 s)

Results

Results (Continued)

- For 0.1, 1, and 100 F samples
 - Measured voltage changes of all experiments (i.e. "Mea.") are within bounds when α =0.11 (i.e., "L11" and "U11").
- For 10 F sample
 - Measured voltage changes of three experiments (no. 6, 10, and 11) are not within bounds when α =0.11. They are confined by bounds when α =0.25 (i.e., "L25" and "U25").
 - Measured voltage changes of the other eight experiments are within bounds when α =0.11.

Conclusion

- Derived formulas can be used to estimate the bounds of the supercapacitor open-circuit voltage change after constant power experiments, which is due to ESR and charge redistribution.
- Part of the information needed to estimate the bounds can be extracted from supercapacitor datasheet and constant power experiment setup.
- Further work needs to be conducted to determine the parameter characterizing the ratio of the delayed branch capacitance to the immediate branch capacitance.

References

- [1] H. Yang and Y. Zhang, "Analysis of supercapacitor energy loss for power management in environmentally powered wireless sensor nodes," *IEEE Transactions on Power Electronics*, vol. 28, no. 11, pp. 5391–5403, 2013.
- [2] J. W. Graydon, M. Panjehshahi, and D. W. Kirk, "Charge redistribution and ionic mobility in the micropores of supercapacitors," *Journal of Power Sources*, vol. 245, pp. 822–829, 2014.
- [3] H. Yang, "Analysis of supercapacitor charge redistribution through constant power experiments," in *Proceedings of The 2017 IEEE Power & Energy Society General Meeting (PESGM 2017)*, 2017, in press.

Thank You!