Optimal Control for Battery Storage Using Nonlinear Models

Di Wu, Patrick Balducci, Alasdair Crawford, Vilayanur Viswanathan, and Michael Kintner-Meyer

Pacific Northwest National Laboratory

October 12, 2017
Outline

1. Introduction
2. Optimal charging control using linear and nonlinear models
3. Case study
4. Conclusion and future work
Introduction

Background

Grid applications:
- Energy arbitrage
- Balancing service
- Capacity value
- Distribution system upgrade deferral
- Outage mitigation

Customer-side applications:
- Energy charge reduction
- Demand charge reduction
Optimal control is desired in order to best utilize the limited power and energy capacity of BSS.

Look-ahead optimization is required to capture interdependent operation over time.

Fixed power rating and constant round-trip or one-way efficiencies are used in existing optimal scheduling methods:

- Inaccurate economic assessment results
- Infeasible operating schedule
Optimal scheduling with linear battery model

\[\begin{align*}
\mathbf{P}_1 : & \quad \max_{p_k, p_k^{\text{batt}}, s_k, \Delta s_k} \quad \sum_{k=1}^{K} \lambda_k p_k \\
\text{subject to:} & \quad -p^-_{\text{max}} \leq p_k \leq p^+_{\text{max}}, \quad \forall k = 1, \ldots, K \\
\text{Charging/discharging limit:} & \quad \left\{ \begin{array}{ll}
p_k/\eta^+ & \text{if } p_k \geq 0 \\
p_k \eta^- & \text{if } p_k < 0
\end{array} \right. , \quad \forall k = 1, \ldots, K \\
\text{Rate change of energy in batt.:} & \quad p_k^{\text{batt}} = \\
\text{SOC change:} & \quad \Delta s_k = p_k^{\text{batt}} \Delta T/E_{\text{max}}, \quad \forall k = 1, \ldots, K \\
\text{Dynamics of SOC:} & \quad s_k = s_{k-1} - \Delta s_k, \quad \forall k = 1, \ldots, K \\
\text{SOC limits:} & \quad s^L_k \leq s_k \leq s^U_k, \quad \forall k = 1, \ldots, K
\end{align*} \]
Limitations with existing linear battery model

- \([-p_{\text{min}}, p_{\text{max}}]\): incapable to model varying charging/discharging range
- \(E_{\text{max}}\): inaccurate to represent energy capacity
- \(\eta^+, \eta^+\): difficult to estimate overall efficiency and inaccurate to capture actual losses
Varying power capability and SOC change rate

1 MW/3.2 MWh vanadium redox BSS
Varying power capability and SOC change rate (cont.)

1 MW/3.2 MWh vanadium redox BSS
Optimal scheduling with nonlinear battery model

\[\mathbf{P}_2 : \max_{p_k, s_k, \Delta s_k} \sum_{k=1}^{K} \lambda_k p_k \]

subject to:

Charging/discharging limit:
\[p_k \in \mathcal{P}_{s_k}, \quad \forall k = 1, \cdots, K \]

SOC change:
\[\Delta s_k = f(p_k, s_k), \quad \forall k = 1, \cdots, K \]

Dynamics of SOC:
\[s_k = s_{k-1} - \Delta s_k, \quad \forall k = 1, \cdots, K \]

SOC limits:
\[\underline{S}_k \leq s_k \leq \overline{S}_k, \quad \forall k = 1, \cdots, K \]
Assumptions and inputs

- BSS: 1 MW/3.2 MWh vanadium redox BSS at Turner substation in Pullman in Washington State.
- Applications: energy arbitrage and energy imbalance reduction
- Price: The Mid-Columbia prices from 2011 to 2015
Economic performance comparison results

2 MW/6.4 MWh
Varying round-trip efficiency

\[\eta(s) = \frac{r_{\text{ch}}(s)}{r_{\text{disch}}(s)} \]
BSS power and SOC

![Price ($/MWh)](image)

![Power (MW)](image)

![SOC](image)

Di Wu (PNNL) Nonlinear Battery Model October 12, 2017
Conclusion and future work

Conclusion:

- Nonlinear BSS model better captures varying charging/discharging power capability and efficiencies.
- Optimal scheduling without accurate nonlinear BSS model could result in significant errors in benefits assessment, and even infeasible operation.

Future work:

- Apply the proposed method with nonlinear model for other grid and/or customer-side applications.
Thank you! Questions?

Di Wu
di.wu@pnnl.gov