Cheap, Abundant & Safe Materials =

Advanced Zinc-Manganese Oxide Alkaline Batteries

October 2017, San Diego, California

Timothy N. Lambert
Sandia National Laboratories
Grid Energy Storage

Need:
Safe, reliable, **low-cost** electrochemical storage

Alkaline Zn/MnO₂ Batteries

- **Cost**
 - Traditional primary batteries - $18 per kWh
 - Low-cost materials and manufacturing
 - Established supply chain

- **Safety**
 - Aqueous chemistry
 - Non-flammable
 - EPA certified for landfill disposal

- **Reliability**
 - Long shelf-life
 - Limited thermal management required

Reversibility and Cycle life are the Challenges
Toward Low Cost/High Volumetric Energy Storage

1. Support Limited Depth-of-Discharge Efforts
2. Develop Higher Capacity Batteries
Alkaline Zn/MnO$_2$ Batteries

Issues to be addressed

Cathode:
- Irreversibility of Cathode
- Susceptibility to Zinc poisoning

Separator:
- Zincate crossover

Anode:
- Shape Change
- Dendrite Growth
- Irreversible ZnO Passivation

Limiting Depth of Discharge has been shown to be a viable approach

Full 2e$^-$ can be stabilized but is still susceptible to zinc poisoning

The Team

Dr. Timothy Lambert
Dr. Jonathon Duay
Maria Kelly
Ruby Aidun
Julian Vigil
Dr. Eric Allcorn

(CINT)
Dr. Brian Swartzentruber
Dr. Katherine Jungjohann

Prof. Robert Messinger
Dr. Gautum Yadav
Michael D’Ambrose
Michael Nyce

Dr. Damon Turney
Michael Nyce
Snehal Kohlekar
Jinchao Huang

Also leveraging SNL-LDRD and CINT Proposal
Summary for Project

FY 17 Accomplishments

1. Comprehensive study of electrolyte additive on limited DOD Zn/MnO₂ batteries: Extend battery lifetime by ~ 300%
2. Developed new assay to determine zincate diffusion constants for separators
3. Examined use of zincate impermeable ceramic separator for limited DOD Zn/MnO₂ Batteries
4. Analysis of zinc cycle life: Increased DOD on zinc anode: > 500 cycles@15% DOD
5. Examined effect of charging protocols on Zn/MnO₂ cycle life
6. Development of a model describing the behavior of γ-MnO₂ in shallow-cycled Zn/MnO₂ batteries
7. Development of improved zincate blocking separators

Manuscripts

2. J. Duay, M. Kelly and T. N. Lambert “Effect of triethanolamine on rechargeable Zn/MnO₂ alkaline batteries under reduced depth of discharge conditions” manuscript submitted.

Presentations

Other

1. “Understanding the electrochemical processes in alkaline Zn-MnO₂ batteries” CINT User Proposal accepted.
Anode

Shape Change

Dendrite Growth

Improved Anode DOD @ CUNY-EI

Irreversible ZnO Passivation

Theoretical Study of H Trapping by γ-MnO$_2$

Research Objectives

- Develop a model describing the behavior of γ-MnO$_2$ in shallow-cycled Zn/MnO$_2$ batteries.
- Examine structural changes occurring in γ-MnO$_2$ during the initial discharge reaction.
- Investigate the mechanism of formation of the α-MnOOH phase.
- Study the influence of DOD and the cycle life of rechargeable Zn/MnO$_2$ batteries.

Computational Methods

- Quantum ESPRESSO* plane wave electronic structure code
- Density functional theory + ultra-soft pseudopotentials
- Revised generalized gradient approximation (PBEsol)

* http://www.quantum-espresso.org

Discharge reaction in the γ-MnO$_2$ cathode:

$$\text{MnO}_2 + x\text{H}_2\text{O} + xe^- \rightarrow \text{MnO}_{2-x}(\text{OH})_x + x\text{OH}^-$$

I. Vasiliev et al. “Ab initio studies of proton insertion in shallow-cycled gamma-MnO$_2$” manuscript in preparation.
Theoretical Study of H Trapping by γ-MnO$_2$

Calculated Lowest Energy Structures of MnO$_{2-x}$(OH)$_x$ for 0 ≤ x ≤ 1

- Protonation produces significant structural distortions in γ-MnO$_2$.
- Energy of H-insertion is lower for 2x1 R-MnO$_2$ tunnels than for 1x1 β-MnO$_2$ tunnels.
- Protonation is carried out in three stages: (1) 1 H atom is inserted in each 2x1 tunnel, (2) 2 H atoms are inserted in each 2x1 tunnel, (3) 1 H atom is inserted in each 1x1 tunnel.

I. Vasiliev et al. “Ab initio studies of proton insertion in shallow-cycled gamma-MnO$_2$” manuscript in preparation.
Theoretical Study of H Trapping by γ-MnO$_2$

- Binding energy per H atom decreases significantly with increasing DOD.
- Volume of protonated γ-MnO$_2$ phase increases nonlinearity with increasing DOD.
- Initially, inserted protons occupy 2x1 tunnels of γ-MnO$_2$ producing α-MnOOH.
- Protonation of 1x1 tunnels leads to structural breakdown of MnO$_2$-x(OH)$_x$.
- Battery life cycle can be extended by limiting protonation to 1 H atom per 2x1 tunnel.

I. Vasiliev et al. “Ab initio studies of proton insertion in shallow-cycled gamma-MnO$_2$” manuscript in preparation.
TEA additive in limited DOD Zn/MnO$_2$

- Triethanolamine reported to complex with Mn$^{3+}$ and Mn$^{2+}$ in alkaline
- Previously examined for full 1e- and 2e- discharges
- Thought to impact only second e-

\[\text{C Rate} = \frac{\text{Current (A)}}{\text{Rated Capacity (Ah)}} \]

\[\sim 130 \text{ mAh (MnO}_2\text{)} \text{ cell, 10\%DOD, C/5 discharge rate} \]

J. Duay et al. “Effect of triethanolamine on rechargeable Zn/MnO$_2$ alkaline batteries under reduced depth of discharge conditions” manuscript submitted.
Need for Selective Separators

- Research by Ford in the 1980s showed that the MnO$_2$ cathode could be stabilized at low loadings in the absence of Zinc
- New stabilized 2e- cathodes are 100% reversible in the absence of Zinc

Imperative need for zinate blocking separators
Separators – Ceramic Separator

Battery Assembly Schematic

NaSICON

2.54 cm

NaSuper Ionic CONductor

\[\text{Na}_{1+x}\text{Zr}_2\text{Si}_x\text{P}_{3-x}\text{O}_{12}, \ 0 < x < 3 \]

NaSICON purchased from Ceramatec

SEM/EDS analysis after cycling

<table>
<thead>
<tr>
<th>Element</th>
<th>Atomic %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Au K</td>
<td>0.2</td>
</tr>
<tr>
<td>C K</td>
<td>43.9</td>
</tr>
<tr>
<td>F K</td>
<td>10.7</td>
</tr>
<tr>
<td>Mn K</td>
<td>9.8</td>
</tr>
<tr>
<td>Na K</td>
<td>1.5</td>
</tr>
<tr>
<td>O K</td>
<td>32.3</td>
</tr>
<tr>
<td>Zn K</td>
<td>1.6</td>
</tr>
</tbody>
</table>

Zinc-Based Particles

Ceramic Separators in NaOH electrolyte are viable at low rates

Graph

- **Celgard + Cellophane Separator**
- **0.5 mm NaSICON Separator**
- **1.0 mm NaSICON Separator**

- **Discharge End Voltage**
- **Cycle Number**

J. Duay et al. manuscript in preparation.
Method utilizes Anodic Stripping Voltammetry

Oxidation/Cleaning of Electrode

- **ZnO**
 - \(\text{ZnO(s)} + \text{H}_2\text{O} + 2\text{OH}^- \rightarrow \text{Zn(OH)}_4^{2-} \)

- **PbO**
 - \(\text{PbO(s)} + \text{H}_2\text{O} + \text{OH}^- \rightarrow \text{Pb(OH)}_3^- \)

- **CdO**
 - \(\text{CdO(s)} + \text{H}_2\text{O} + \text{OH}^- \rightarrow \text{Cd(OH)}_3^- \)

- **Bi\(_2\)O\(_3\)**
 - \(\text{Bi}_2\text{O}_3\text{(s)} + 3\text{H}_2\text{O} + 2\text{OH}^- \rightarrow 2\text{Bi(OH)}_4^- \)

Plating/Accumulation of Metal

Oxidation/Stripping of Metal

Semi-quantitative limits of detection (LOD): ppb levels

Selective - different metals are resolved by their stripping/oxidation potential

Method utilizes hydroxide complexation/solubility

- Sensitive
- Selective

First ever ASV method for zinc in alkaline

Special thanks to Eric Allecorn for help in designing and printing

http://www.porexfiltration.com/learning-center/technology/precipitation-microfiltration/

Separators

- Compares favorably vs. ICP and Complexometric methods
- Faster experiment times, very reproducible, low limit of detection
- First demonstration of ASV measurement of Zinc in alkaline
- Will allow for rapid screening of newly developed membranes

Summary for Project

FY 17 Accomplishments

1. Comprehensive study of electrolyte additive on limited DOD Zn/MnO$_2$ batteries: Extend battery lifetime by \sim 300 %
2. Developed new assay to determine zincate diffusion constants for separators
3. Examined use of zincate impermeable ceramic separator for limited DOD Zn/MnO$_2$ Batteries
4. Analysis of zinc cycle life: Increased DOD on zinc anode: > 500 cycles@15% DOD
5. Examined effect of charging protocols on Zn/MnO$_2$ cycle life
6. Development of a model describing the behavior of γ-MnO$_2$ in shallow-cycled Zn/MnO$_2$ batteries
7. Development of improved zincate blocking separators

Manuscripts

2. J. Duay, M. Kelly and T. N. Lambert “Effect of triethanolamine on rechargeable Zn/MnO$_2$ alkaline batteries under reduced depth of discharge conditions” *manuscript submitted*.

Presentations

Other

1. “Understanding the electrochemical processes in alkaline Zn-MnO$_2$ batteries” CINT User Proposal accepted.
Advanced Zn-MnO$_2$ Alkaline Batteries

FY 18 Path Forward
1. Establish method for *in situ* Raman spectroscopic interrogation of Zn/MnO$_2$ cells
2. Develop optimized Zn anode with increased depth-of-discharge and cycle lifetime
3. Advanced separator development
4. Examine 2e- discharge of MnO$_2$ using zincate blocking membrane
5. Finish *ab initio* (DFT) model of hydrogen trapping by gamma-MnO$_2$ in shallow-cycled MnO$_2$ electrodes

Acknowledgements
Dr. Imre Gyuk, Energy Storage Program Manager, Office of Electricity Delivery and Energy Reliability is thanked for his financial support of this project.

Team Members

<table>
<thead>
<tr>
<th>SNL</th>
<th>CUNY-EI</th>
<th>NMSU</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. Jonathon Duay</td>
<td>Prof. Sanjoy Banerjee</td>
<td>Prof. Igor Vasiliev</td>
</tr>
<tr>
<td>Maria Kelly</td>
<td>Dr. Damon Turney</td>
<td>Birendra Magar</td>
</tr>
<tr>
<td>Ruby Aidun</td>
<td>Dr. Gautum Yadav</td>
<td></td>
</tr>
<tr>
<td>Julian Vigil</td>
<td>Michael D’Ambrose</td>
<td></td>
</tr>
<tr>
<td>Dr. Eric Allcorn</td>
<td>Snehal Kohlekar</td>
<td></td>
</tr>
<tr>
<td>(CINT)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dr. Brian Swartzentruber</td>
<td></td>
<td>Jinchao Huang</td>
</tr>
<tr>
<td>Dr. Katherine Jungjohann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Zn-MnO$_2$ Batteries for Grid Storage

Opportunity exists to Increase Capacity and Decrease Costs

Toward Low Cost/High Volumetric Energy Storage

1. Support Limited Depth-of-Discharge Efforts
2. Develop Higher Capacity Batteries

The end

Thank you
Battery Fabrication

- COTS materials
- 10 vol% TEA added to electrolyte
- 3D printed cells with pressure relief valve
- Cathode-limited cells (< 1.5% DOD on Zn)
- ~ 200 mAh capacity

Cycling Protocol

DOD controlled by time and C-rate

1. Constant current charge
2. Constant voltage charge
3. Rest step
4. Constant current discharge
5. Rest step

\[M \times T \times C = \text{Discharge Current} \]

M: Mass of Active Material (g)
T: Theoretical Capacity of Material (mAh/g)
C: C-rate (h\(^{-1}\))
Low DOD discharge is viable technology

\[\text{Zn} \quad \text{MnO}_2 \]

\[
\begin{align*}
2 \text{e}^- &= 820 \text{ mAh/g} \\
2 \text{e}^- &= 616 \text{ mAh/g} \\
1 \text{e}^- &= 308 \text{ mAh/g}
\end{align*}
\]

- Limited DOD provides for highly reversible system
- 2013 Urban Electric Power startup in NYC
- $100 – 150 /kWh

http://www.urbanelectricpower.com

Opportunity exists to drastically increase capacity
Limited DOD Cycling

Reversibility can be maintained when only a fraction of the first e- step is cycled.

\[\gamma-\text{Mn}^{IV}O_2 \]

Ramsdellite-like (2x1 channels)
Pyrolusite intergrowths (1x1 channels)

\[\alpha-\text{Mn}^{III}OOH \]

Volume expansion
\[\text{Mn}^{3+} (0.645 \text{ Å}) > \text{Mn}^{4+} (0.530 \text{ Å}) \]

\[\text{Formation of undesirable phases from soluble Mn}^{3+} \]

\[\text{Mn}_3\text{O}_4 \]
\[\text{ZnMn}_2\text{O}_4 \]
\[\text{Mn}_2\text{O}_3 \]
\[\text{Mn(OH)}_2 \]

Cathode issues
- Only 5-10% of total capacity
- Crystal Structure Breakdown
- Inactive Phase(s) formed
- Zinc poisoning

Anode issues
- < 10% of total capacity
- Shape Changes
- Passivation
- Dendrite Formation

- Limited DOD provides for highly reversible system
- 2013 Urban Electric Power startup in NYC
- ~ $100/kWh

- Wh
ALKALINE BATTERY TECHNOLOGY

- Crystal structure breakdown
- Formation of Inactive phases
- Zinc poisoning
- Diffusion of zincate ions
- Shape change
- Passivation
- Dendrite formation

617mAh/g

MnO₂(+) Zn(-)

820mAh/g

5-10% of total capacity

2-8% of total capacity
Failure Mechanisms of Cathode

1. Instability of Mn(III) resulting in formation of irreversible Mn_3O_4

2. Zn poisoning forming irreversible ZnMn_2O_4 (even before 1st full 1 e-)
Stabilized Zn-MnO Battery Development (ARPA-E)

Chemistry relies on formation of a \textit{layered} birnessite MnO$_2$ structure and \textit{stabilizing} this structure for thousands of cycles.

\textbf{Prismatic} battery design for pasted Zn and stabilized MnO

\textbf{Two additives} stabilize this structure: Bi + “A”
Separators

- Compares favorably vs. ICP and Complexometric methods
- Faster experiment times, very reproducible, low limit of detection
- First demonstration of ASV measurement of Zinc in alkaline
- Will allow for rapid screening of newly developed membranes
Anodic Stripping Voltammetry (ASV)

-Historically done on Hg drop electrodes
-Usually done in buffered solutions

Sensitive
-limits of detection (LOD): ppb levels
Selective
-different metals are resolved by their stripping/oxidation potential

ASV with *in situ* Plated Bi Films

-Bi film electrodes increasingly replacing Hg

Bi film electrodes

- less toxic than Hg
- low sensitivity to dissolved oxygen
- better reproducibility
- no need for electrode conditioning

Typically done in buffered pH ~4 solutions due to insoluble metal oxides at higher pH levels

During stripping, the element of interest is stripped from the Bi film.
Alkaline Aqueous Chemistry (pH>14)

Insoluble metal oxides become soluble by hydroxide complexation

\[
\begin{align*}
\text{ZnO}(s) + \text{H}_2\text{O} + 2\text{OH}^- & \rightarrow \text{Zn(OH)}_4^{2-} \\
\text{PbO}(s) + \text{H}_2\text{O} + \text{OH}^- & \rightarrow \text{Pb(OH)}_3^{-} \\
\text{CdO}(s) + \text{H}_2\text{O} + \text{OH}^- & \rightarrow \text{Cd(OH)}_3^{-} \\
\text{Bi}_2\text{O}_3(s) + 3\text{H}_2\text{O} + 2\text{OH}^- & \rightarrow 2\text{Bi(OH)}_4^{-}
\end{align*}
\]

This allows for the opportunity to use ASV to measure metal ion species in highly alkaline environments for the first time.
Zinc stripping peak is only well-defined and Gaussian in the presence of Bi, Cd, and Pb….why?
Zinc ASV Curves for Various Films

Zinc stripping peak is only well-defined and Gaussian in the presence of Bi, Cd, and Pb....why?
Need for all three Cd, Pb, and Bi?

All three have been used as **additives in battery grade Zn** where ‘plating’ and ‘stripping’ of Zn is necessary.

Cadmium (Cd)
- increases hydrogen overpotential
- known to alloy with Zn

Lead (Pb)
- increases hydrogen overpotential
- known as alternative ASV film to Bi

Bismuth (Bi)
- increases hydrogen overpotential
Need for Selective Separators

Zinc Anode \(\text{Zn(OH)}_4^{2-} \) \(> 6 \text{M KOH} \) MnO\(_2\) Cathode

MnO\(_2\) Cathode After Cycling

Fig. 5. Effect of the introduction of zinc on capacity retention of modified MnO\(_2\) electrodes: 1) chemically modified electrode; 2) physically modified electrode; 3) physically modified electrode in 9M KOH + 0.1M Zn(OH)\(_4\)^{2-}.

- Research by Ford in the 1980s showed that the MnO\(_2\) cathode could be stabilized at low loadings \textit{in the absence of Zinc}
- New stabilized 2e- cathodes are 100% reversible \textit{in the absence of Zinc}

\textit{Imperative need for zinctate blocking separators}
Separators – Analysis Method?

ICP Metal ion analysis

- Inductively Coupled Plasma – Mass Spectrometer
- Perkin-Elmer
- Time intensive
- Lots of glassware
- Requires acidic solutions (2% HNO₃)
- Requires total dissolved solids <0.2%
- Huge dilution >300X
- Expensive bulky equipment

Complexometric Titrations

- UV/Vis Spectrometer
- Difficult Endpoint Determination
- Requires pH ≤ 11
- Use of ammonium buffer
- Dilution >20X
- Ppm limits of detection
CUNY Battery Research Timeline

- **Flow-Assisted Ni-Zn Battery:**
 - UEP Power Battery, 30 kWh String, 100 kWh Installation (NYSERDA, DOE NETL)

- **Ni-Zn Vehicle Battery:**
 - (NYSERDA)

- **Shallow-Cycled Zn-MnO\textsubscript{2} Battery:**
 - UEP Production Product. <$100/kWh cost, >4000 cycles, Cathode based on 60 mAh/g-MnO\textsubscript{2} (ARPA-E)

- **Stabilized Zn-MnO Battery:**
 - Bismuth-stabilized birnessite concept realized with novel chemistry discovery. (ARPA-E)
 - Focuses on Energy density (Wh/L). Targets <$50/kWh cost, >500 cycles, 180 Wh/L.
 - Cathode based on 600 mAh/g-MnO\textsubscript{2} (NYSERDA)

- **Flow-Assisted Zn Anode**

- **Pasted Zn Anode**

- **NiOOH Cathode**

- **Shallow-Cycled MnO\textsubscript{2} Cathode**

- **Stabilized MnO\textsubscript{2} Cathode** (Birnessite, Full-Cycle)
DEVELOPMENT OF Zn-MnO₂ BATTERY

1866
1st MnO₂-Zn battery

1950
Alkaline MnO₂-Zn battery

1970
5% Rechargeable Capacity

1980
60-80% Rechargeable Capacity

2010-2016
- 2010-2014: ARPA-E Support of CUNY shallow-cycle MnO₂
- 2014-2016: ARPA-E support of CUNY stabilized full-cycling MnO₂

Primary
- Low Power

Limited Capacity
- Poor Energy Density

Potentiodynamic
- Poor Cycle Life

Radiology
- Limited Capacity

Halina Wroblowa